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Abstract—In a cognitive radio (CR) network, a secondary user
learns the spectrum environment and dynamically accesses the
channel where the primary user is inactive. At the same time,
a primary user emulation (PUE) attacker can send falsified
primary user signals and prevent the secondary user from
utilizing the available channel. Although there is a large body
of work on PUE attack detection and defending strategies, the
best attacking strategies that an attacker can apply have not
been well studied. In this paper, for the first time, we study the
optimal PUE attack strategies without any prior knowledge on
the primary user activity characteristics and the secondary user
access strategies. We formulate the problem as a non-stochastic
online learning problem where the attacker needs to dynamically
decide the attacking channel in each time slot based on its attack-
ing experience in previous slots. The challenge in our problem is
that the PUE attacker cannot observe the reward on the attacked
channel because it never knows if a secondary user ever tries
to access it. To solve this challenge, we propose an attack-but-
observe-another (ABOA) scheme, in which the attacker attacks
one channel in the spectrum sensing phase, but observes at least
one other channel in the data transmission phase. We propose
two non-stochastic online learning-based attacking algorithms,
EXP3-DO and OPT-RO, which select the observing channel
deterministically based on the attacking channel and uniform
randomly, respectively. EXP3-DO employs an existing theoretical
framework and is suboptimal. OPT-RO is based on the new
proposed theoretical framework and is optimal. They achieve
regret in the order of O(T

2
3 ) and O(

√
T ), respectively. T is the

number of slots the CR network operates. We also generalize
OPT-RO to multichannel observation cases. We show consistency
between simulation and analytical results under various system
parameters.

I. INTRODUCTION

Nowadays the demand to increased wireless bandwidth
is growing rapidly due to the increasing growth in mobile
applications, which raises the spectrum shortage problem. To
address this problem, Federal Communications Commission
(FCC) has authorized opening spectrum bands owned by
licensed primary users (PU) to unlicensed secondary users
(SU) when the primary users are inactive [1]. Cognitive
radio (CR) is a key technology that enables secondary users
to learn the spectrum environment and dynamically access
the best available channel. Meanwhile, an attacker can send
signals emulating the primary users to manipulate the spectrum
environment, and can thus prevent a secondary user from
utilizing the available channel. This attack is called primary
user emulation (PUE) attack [2]–[7].

Existing works on PUE attacks mainly focus on PUE attack
detection [8]–[10] and defending strategies [4]–[7]. However,
there is a lack of study on the optimal PUE attacking strategies.
Better understanding of the optimal attacking strategies will
enable us to quantify the severeness or impact of a PUE
attacker on the secondary user’s throughput. It will also shed
light on the design of defending strategies.

In practice, an attacker may not have any prior knowledge
of the primary user activity characteristics or the secondary
user’s dynamic spectrum access strategies. Therefore, it needs
to learn the environment and attack at the same time. In this
paper, for the first time, we study the optimal PUE attacking
strategies without any assumption on the prior knowledge of
the primary user activity or secondary user accessing strate-
gies. We formulate this problem as a non-stochastic online
learning problem.

Different from all the existing works on online learning
based PUE attack defending strategies [4]–[7], in our problem,
an attacker cannot observe the reward on the attacking channel.
Considering a time-slotted system, the PUE attack usually
happens in the channel sensing period, in which a secondary
user attempting to access a channel conducts spectrum sensing
to decide the presence of a primary user. If a secondary user is
sensing the attacking channel, it will believe the primary user
is active so that it will not transmit the data in order to avoid
interfering with the primary user. In this case, the PUE attack is
effective since it disrupts the secondary user’s communication
degrading its throughput and affects the knowledge of the
spectrum availability of the secondary user. In the other case,
if there is no secondary user attempting to sense or access
the attacking channel, the attacker makes no impact on the
secondary user, and the attack is ineffective. However, the
attacker cannot differentiate between the two cases when it
launches a PUE attack on a channel because sensing is a
passive behavior.

To address this challenge, we propose a new attacking
scheme called attack-but-observe-another (ABOA), in which
an attacker selects one channel to attack in the channel sensing
period but selects at least one other channel to observe in
the data transmission phase in the same slot. This strategy
is motivated by the observation that a short channel sensing
phase is usually followed by a longer data transmission phase
in which an attacker is able to switch to at least one other



channel to observe the secondary user’s activity.
Based on the basic idea of the ABOA scheme, we propose

two non-stochastic online learning algorithms to dynamically
decide the attacking and observing channels in each time slot
in a slotted system. One online learning algorithm, EXP3-
DO, decides the observing channel deterministically based on
the attacking channel, and the other, OPT-RO, decides the ob-
serving channel randomly. Both of the algorithms dynamically
choose the attacking channel in each slot according to the
observed past activity of the secondary user.

The proposed EXP3-DO algorithm applies the existing
theoretical framework [11] in which it can be categorized as
a specific group of graphs called partially observable graphs.
[11] drives a regret in the order of O(T

2
3 ) for partially observ-

able graphs. OPT-RO is based on a new theoretical framework
we propose and we prove its regret is in the order of O(

√
T ).

T is the number of slots the CR network operates. Since the
regret of any non-stochastic online learning algorithm in this
problem is Ω(

√
T ) [11], [12], OPT-RO is the optimal PUE

attacking strategy without any prior knowledge of the primary
user activity and secondary user access strategies. We further
generalize this optimal learning algorithm to multichannel
observation case and analyze its regret.

We summarize the contributions of this paper as follows:
• We propose a new PUE attack scheme, ABOA, in which

a PUE attacker dynamically selects one channel to attack
but chooses at least another channel to observe in each
time slot.

• We formulate the PUE attack as a non-stochastic online
learning problem without any assumption on the prior
knowledge of either primary user activity characteristics
or secondary user dynamic channel access strategies.

• We propose two online learning algorithms, EXP3-DO
and OPT-RO, to dynamically decide the attacking and
observing channels. EXP3-DO has a suboptimal regret
of O(T

2
3 ) and we prove that OPT-RO achieves an opti-

mal regret of O(
√
T ). The algorithm and the proof for

the optimal one are further generalized to multichannel
observation cases.

• Theoretical contribution: For the first time we propose
an online-learning algorithm that despite observing the
actions partially in each time slot, can achieve an optimal
regret order. We accomplish it by making randomization
on the actions rather than deterministically since it can
lead to full observation during several time-slots.

• We conduct extensive simulations to evaluate the perfor-
mance of the proposed algorithms under various system
parameters.

Through theoretical analysis and extensive simulations un-
der various system parameters, we find that the number of
observing channels has an important impact on the attacker’s
regret. Our theoretical analysis shows that the regret is pro-
portional to

√
1/m, where m is the number of channels that

can be observed by the attacker. This non-linear relationship
implies that the regret can be tremendously reduced when
the number of observing channels increases in the beginning.
However, when more observing channels are added, the re-

duction in regret becomes marginal. Therefore, a relatively
small number of observing channels is sufficient to approach
the optimal regret. Furthermore, the attacker’s regret is also
proportional to

√
K lnK, where K is the total number of

channels.
The rest of the paper is organized as follows. Section II

discusses the related work. Section III describes the system
model and problem formulation. Section IV proposes the
attack strategies and derives the upper-bound one their regret.
Simulation results are presented in section V. Finally section
VI concludes the paper and discusses future work.

II. RELATED WORK

A. PUE Attacks in Cognitive Radio Networks
Existing work on PUE attacks mainly focus on PUE attack

detection [8]–[10] and defending strategies [4]–[7].
There are few works discussing attacking strategies under

dynamic spectrum access scenarios. In [4], [5], the attacker ap-
plies partially observable Markov decision process (POMDP)
framework to find the attacking channel in each time slot. It
is assumed that the attacker can observe the reward on the
attacking channel. That is, the attacker knows if a secondary
user is ever trying to access a channel or not. In [6], [7], it is
assumed that the attacker is always aware of the best channel to
attack. However, there is no methodology proposed or proved
on how the best attacking channel can be decided.

The optimal PUE attack strategy without any prior knowl-
edge of the primary user activity and secondary user access
strategies is not well understood. In this paper, we fill this gap
by formulating this problem as a non-stochastic online learning
problem. Our problem is also unique in that the attacker cannot
observe the reward on the attacking channel due to the nature
of PUE attack.

B. Multi-armed Bandit Problems
There is a rich literature about online learning algorithms.

The most related ones to our work are multi-armed bandit
(MAB) problems [13]–[17]. The MAB problems have many
applications in cognitive radio networks with learning capabil-
ities [6], [18], [19]. In such problems, an agent plays a machine
repeatedly and obtains a reward when it takes a certain action
at each time. Any time when choosing an action the agent faces
a dilemma of whether to take the best rewarding action known
so far or to try other actions to find even better ones. Trying
to learn and optimize his actions, the agent needs to trade off
between exploration and exploitation. On one hand the agent
needs to explore all the actions often enough to learn which
is the most rewarding one and on the other hand he needs
to exploit the believed best rewarding action to minimize his
overall regret.

MAB problems can be categorized into stochastic ones and
non-stochastic ones. In stochastic ones [13], the reward of the
actions is assumed under a parametrized distribution, but the
parameter of the distribution is unknown. In non-stochastic
ones [14], [15], no probabilistic model is assumed for the
reward and the reward can be arbitrary. Alternatively, the non-
stochastic MAB problems can be interpreted as focused on
some unknown sample path of reward.



Figure 1: Time slot structure of a) the SU and b) the attacker.

In our case, the PUE attacker does not have any prior
knowledge of the primary user activity or secondary user chan-
nel accessing strategies, and consequently the non-stochastic
MAB problem serves as a better framework. For most existing
non-stochastic MAB frameworks [14], [15], the agent needs
to observe the reward on the taken action. Therefore, these
frameworks cannot be directly applied to our problem where
a PUE attacker cannot observe the reward on the attacking
channel.

Most recently, Alon et al. generalize the cases of MAB
problems [11]. They show in their work that if an agent takes
an action without observing its reward, but observes the reward
of all the other actions, it can achieve an optimal regret in
the order of O(

√
T ). However, the agent can only achieve a

suboptimal regret of O(T
2
3 ) if it cannot observe the rewards

on all the other actions simultaneously and if no action is left
unobserved.

In this paper, we advance this theoretical study by proposing
a strategy, OPT-RO, that can achieve the optimal regret in
the order of O(

√
T ) without observing the rewards on all the

channels other than the attacking one simultaneously. In OPT-
RO, the attacker uniform randomly selects at least one channel
other than the attacking one to observe in each time slot.

C. Jamming Attacks

There are several works formulating jamming attacks and
anti-jamming strategies as online learning problems [19]–[22].
In jamming attacks, an attacker can usually observe the reward
on the attacking channel where an ongoing communication
between legitimate users can be detected. Also it is possible
for the defenders whether they are defending against a jammer
or a PUE attacker to observe the reward on the accessed
channel. PUE attacks are different in that the attacker attacks
the channel sensing phase and prevents a secondary user from
utilizing an available channel. As a result, a PUE attacker
cannot observe the instantaneous reward on the attacking
channel. That is, it cannot decide if an attack is effective or
not.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cognitive radio network consisting of several
primary users, multiple secondary users, and one attacker.
There are K (K > 1) channels in the network. We assume
the system is operated in a time-slotted fashion.

A. Primary User

We assume the primary users arbitrarily get on and off on
all the channels. In each time slot, each primary user is either
active (on) or inactive (off). We assume the on-off sequence
of PUs on the channels is unknown to the attacker a priori.
In other words, the PU activity can follow any distribution or
can even be arbitrary.

B. Secondary User

The secondary users may apply any dynamic spectrum
access policy [23]–[25]. In each time slot, each SU conducts
spectrum sensing, data transmission, and learning in three
consecutive phases as shown in Fig. 1(a).

At the beginning of each time slot, each secondary user
senses a channel it attempts to access. If it finds the channel
idle (i.e., the primary user is inactive), then accesses this
channel; Otherwise, it remains silent till the end of the current
slot in order to avoid interference to the primary user. At the
end of the slot, it applies a learning algorithm to decide which
channel it will attempt to access in the next time slot based
on its past channel access experience.

We assume the secondary users cannot differentiate the
attacking signal from the genuine primary user signal. That
is, in a time slot, when the attacker launches a PUE attack on
the channel a secondary user attempts to access, the secondary
user will not transmit any data on that channel.

C. Attacker

We assume a smart attacker with learning capability. In one
time slot, the attacker conducts the following actions in three
consecutive phases: Attacking, observation, and learning as
shown in Fig. 1(b).

In the attacking phase, the attacker launches the PUE attack
by sending signals emulating the primary user’s signals [5] to
attack the SUs. We do not consider attack on the PUs. Note
that, in this phase, the attacker has no idea if its attack is
effective or not. That is, it does not know if a secondary user
is ever trying to access the attacking channel or not.

In the observation phase following the attacking phase, the
attacker switches to at least one other channel to observe the
communication on that channel. It may detect a primary user
signal, a secondary user signal, or nothing on the observing
channel.

In the learning phase at the end of the time slot, the attacker
decides which channel it attempts to attack in the next slot
based on its past observations.

D. Problem Formulation

Given the above system model, the challenge for the attacker
is to determine in each time slot which channel to launch
attack and which channel to observe.

Since the attacker needs to learn and attack at the same time
and it has no prior knowledge of the primary user activity or
secondary user access strategies, we formulate this problem as
a non-stochastic online learning problem.

We consider T as the total number of time slots the network
operates. We define xt(j) as the attacker’s reward on channel



Table I: Main Notation

T total number of time slots
K total number of channels
k index of the channel
R total reward achieved by the attacker
It index of the channel to be attacked
Jt index of the channel to be observed
γ exploration rate used in algorithms 1 and 2
η learning rate used in algorithms 1 and 2

ωt (i) weight assigned to channel i at time slot t

j at time slot t (1 ≤ j ≤ K, 1 ≤ t ≤ T ). Without loss of
generality, we normalize xt(j) ∈ [0, 1].

More specifically:

xt(j) =

{
1, SU is on channel j at time t

0, o.w.
(1)

Suppose the attacker applies a learning policy ϕ to select
the attacking and observing channels. The aggregated expected
reward of attacks by time slot T is equal to:

Gϕ(T ) = Eϕ

[
T∑
t=1

xt(It)

]
(2)

The attacker’s goal is to maximize the expected value of the
aggregated attacking reward, thus to minimize the throughput
of the secondary user.

maximize Gϕ(T ) (3)

For a learning algorithm, regret is commonly used to
measure its performance. The regret of the attacker can be
defined as follows.

Regret = Gmax −Gϕ (T ) (4)

where

Gmax = max
j

T∑
t=1

xϕt (j) (5)

The regret measures the gap between a learning algorithm
and the maximum accumulated reward the attacker can obtain
when it stays on one optimal channel. This regret is usually
called the weak regret [15]. Then the problem can be trans-
formed to minimize the regret.

Table 1 summarizes the notation used in this paper.

IV. ONLINE LEARNING-BASED ATTACKING STRATEGY

In this section we propose two non-stochastic online learn-
ing algorithms for the attacker to decide which channel to
attack and observe in each time slot. These algorithms do
not require the attacker to observe the reward on the attacked
channel, but assuming the attacker can observe the reward on
at least one other channel.

In the following algorithms, we assume the attacker can
observe the reward on only one other channel. We will
generalize it to the case of multiple channel observation in
Section IV-C.

Both of the algorithms are considered as no-regret algo-
rithms, in which the incremental regret between two consecu-
tive time slots diminishes to zero as time goes to infinity. The
first one, EXP3-DO, achieves a regret in the order of O(T

2
3 )

which is a suboptimal learning algorithm and the latter, OPT-
RO, is optimal with regret in the order of O(

√
T ).

A. Attacking Strategy 1: EXP3-DO

In this algorithm, the attacking channel selection is based on
the accumulated reward distribution on all the channels. While
the observing channel is deterministically dependent on the
attacking channel. The attacker always observes the channel
next to the attacking one. It rounds to channel 1 when it
attacks channel K. So we call this algorithm EXP3-DO (EXP3
with deterministic observation). This is in comparison to EXP3
[15] in which the rewards are observed on the same chosen
action. Fig. 2(a) shows the observation strategy employed by
the attacker when K = 6. The Algorithm 1 shows the online
learning-based attack strategy employed by the attacker.

Algorithm 1: EXP3-DO, EXP3 with Deterministic
Observation

Parameters: γ ∈ [0, e− 2] ,
η ∈ (0, γ/K]

Initialization: ω1(i) = 1, i = 1, ...,K

For each t = 1, 2, ...

1. Set pt(i) = (1− γ) ωt(i)
K∑

j=1

ωt(j)

+ γ
K , i = 1, ...,K

2. Attack channel It ∼ pt and accumulate the unobservable
reward xt(It).

3. In the observation phase, choose channel
Jt := 1 + (I(t) mod K), and observe its reward
xt(Jt) based on equation (1).

4. In the learning phase, for j = 1, 2, ...,K

x̂t(j) =

{
xt(j)
pt(It)

, j = Jt

0, o.w.

ωt+1(j) = ωt(j) exp(ηx̂t(j))

The design of the EXP3-DO is motivated by [11] in which
the idea of bandit graphs is presented. A bandit graph is a
generalization of EXP3 algorithm in which the actions and the
following observations from the chosen action are presented
by the nodes and the edges of a graph, respectively.

Based on the theoretical analysis in [11], any bandit graph
that leaves no node un-observed, achieves a suboptimal regret
order. The only way for a bandit graph to have an optimal
regret order is if all the nodes or all except the chosen one



are observable at each action selection simultaneously or if
always the chosen node is observable, similar to EXP3.

EXP3-DO as an attacking strategy is a baseline of applying
current technologies for the PUE attacker’s attack strategy. In
other words, since the PUE attacker cannot scan through all the
channels in each time slot due to the limited duration of a time
slot, achieving an optimal regret order for the attacker is not
possible by applying the current theoretical frameworks. As a
result, in this algorithm the observation strategy is designed
such that at least no action is left un-observed. So a subop-
timal regret upper-bound can be guaranteed. The observation
strategy stated here in not the only observation structure and
any permutation of channels that creates a partially observable
graph leads to the same regret bound.

We note that in Step 4 of Algorithm 1, only the weight
of the observed channel is updated. The estimated reward
x̂t(j) is an unbiased estimate of the actual reward xt(j),
i.e., conditional on all previously chosen channels before t,
we have E[x̂j(t)|I1, . . . , It−1] = xt(j)

pt(j′)
pt(j

′) = xt(j) where
j′ = (j− 2) mod K+ 1, i.e., the neighboring channel chosen
for attack. To simplify our presentation, we will denote EXP3-
DO by A1 in the following.

Theorem 1. For any K ≥ 2 and for any η ≤ γ
K , the upper

bound on the expected regret of Algorithm 1

Gmax − E[GA1] ≤ (γ + (e− 2)
ηK

γ
)Gmax +

lnK

η
.

holds for any assignment of rewards for any T > 0.

By choosing appropriate values for γ and η, the above upper
bound on the regret can be minimized.

Corollary 1. For any T > 0 and the following values
η = γ2

K(e−2) , and γ = 3
√

(e− 2)K lnK/g
where g is an upper-bound on the Gmax. Then

Gmax − E[GA1] ≤ 33
√

(e− 2)
3
√
T 2K lnK

holds for any arbitrary assignment of rewards.

Proof. We sketch the proof as follows. Since γ ≤ (e − 2),
in order for the regret bound to be non-trivial, we need g ≥
K lnK
(e−2)2 . Then by getting the derivative, we find the optimal
values for η and γ. Also T is an upper bound on the g since
all the rewards are in [0, 1] and the network runs for T time
slots, which gives us the result.

Proof of Theorem 1. Our proposed observing strategy can be
categorized as a partially observable graph in [11]. Because
by choosing an action, the reward on only one other channel
is observed not on all the actions. Also no node is left un-
observed. In Theorem two of [11] the upper-bound of the
regret of weakly observable graphs is proved.

B. Attacking Strategy 2: OPT-RO
In this section, we propose an attacking strategy for the PUE

attacker that despite observing channels partially, achieves an
optimal regret order. The proposed optimal attacking strategy,
called OPT-RO, observes all the channels uniformally at
random. Fig. 2(b) shows the channel observation policy

(a) Deterministic, K = 6. (b) Random, K = 4

Figure 2: Channel observation strategy

for K = 4. For example, if channel 2 is attacked, one
of the three other channels will be chosen uniformally at
random to be observed. The values on the edges indicate
the observation probabilities. Based on our analysis the
upper bound on the attacker’s regret is in the order of
O(
√
T ). The proposed algorithm is presented in Algorithm 2.

Algorithm 2 : OPT-RO, Optimal Online-Learning with
Uniformly Randomized Observation

Parameters: γ ∈ (0, 1/2],
η ∈

(
0, γ

2(K−1)

]
Initialization: ω1(i) = 1, i = 1, ...,K

For each t = 1, 2, ...

1. Set pt(i) = (1− γ) ωt(i)∑K

j=1
ωt(j)

+ γ
K , i = 1, ...,K

2. Attack channel It ∼ pt and accumulate the unobservable
reward xt(It).

3. Choose a channel Jt other than the attacked one
uniformly at random and observe its reward xt(Jt)
based on equation (1)

4. For j = 1, ...,K

x̂t(j) =

{
xt(j)

(1/(K−1))(1−pt(j)) , j = Jt

0, o.w.

ωt+1(j) = ωt(j) exp(ηx̂t(j)).

In Step 4 of Algorithm 2, in order to create x̂t(j), an
unbiased estimate of the actual reward xt(j), we divide the
observed reward, xt(Jt), by (1/(K − 1))(1 − pt(Jt)) which
is the probability of choosing channel Jt to be observed. In
other words, channel Jt will be chosen to be observed if it has
not been chosen for attacking (1−pt(Jt)) and second if it gets
chosen uniformally at random from the rest of the channels,
(1/(K−1)). In the following analysis, we denote OPT-RO by
A2 for simplicity.



Theorem 2. For any K ≥ 2 and for any η ≤ γ
2(K−1) , for the

given randomized observation structure for the attacker the
upper bound on the expected regret of Algorithm 2,

Gmax − E[GA2] ≤ 2(e− 2)(K − 1)ηGmax +
lnK

η

holds for any assignment of rewards for any T > 0.

Similarly, we can minimize the regret bound by choosing
an appropriate value for η.

Corollary 2. For any T > 0, we consider g as an upper-bound
on the Gmax and consider the following value for η

η =
√

lnK
2(e−2)(K−1)g

Then

Gmax − E[GA2] ≤ 2
√

2(e− 2)
√
T (K − 1) lnK

holds for any arbitrary assignment of rewards.

Proof. The proof can be done by taking the parallel steps as in
the proof of Corollary 1. We omit it due to limited space.

Proof of Theorem 2. We define Wt = ωt(1) + · · ·+ωt(K) =
K∑
i=1

ωt(i), then at each time t we have,

Wt+1

Wt
=

K∑
i=1

pt(i)− γ/K
1− γ

exp(ηx̂t(i))

≤
K∑
i=1

pt(i)− γ/K
1− γ

[1 + ηx̂t(i) + (e− 2)(ηx̂t(i))
2]

≤ 1 +
η

1− γ

K∑
i=1

pt(i)x̂t(i)

+
(e− 2)η2

1− γ

K∑
i=1

pt(i)x̂
2
t (i)

≤ exp

(
η

1− γ

K∑
i=1

pt(i)x̂t(i)

+
(e− 2)η2

1− γ

K∑
i=1

pt(i)x̂
2
t (i)

)
(6)

The equality follows from the definition of Wt+1, ωt+1 (i),
and pt(i) respectively in Algorithm 2. Also the last in-
equality follows from the fact that ex ≥ 1 + x. Finally,
the first inequality holds since ex ≤ 1 + x + (e − 2)x2

for x ≤ 1. When η ≤ γ
2(K−1) , the result, ηx̂t(i) ≤ 1

, follows from the observation that either ηx̂t(i) = 0 or
ηx̂t(i) = η xt(i)

1
K−1 (1−pt(i))

≤ η(K − 1) 2
γ ≤ 1, since xt(i) ≤ 1

and pt(i) = (1− γ) ωt(i)∑K

j=1
ωt(j)

+ γ
K ≤ 1− γ + γ

2 ≤ 1− γ
2 .

Now we take the logarithm of both sides of (6) and sum
over t from 1 to T . We derive the following inequality on the
left hand side of the equation which holds for any action j,

T∑
t=1

ln
Wt+1

Wt
= ln

WT+1

W1

≥ lnωT+1(j)− lnK

= η

T∑
t=1

x̂t(j)− lnK. (7)

As a result the inequality (6) will be equal to:
T∑
t=1

x̂t(j)−
T∑
t=1

K∑
i=1

pt(i)x̂t(i) ≤ γ
T∑
t=1

x̂t(j)+

(e− 2)η

T∑
t=1

K∑
i=1

pt(i)x̂
2
t (i) +

lnK

η
(8)

Let x́t(i) = x̂t(i) − ft where ft =
K∑
i=1

pt(i)x̂t(i). We

make the pivotal observation that (8) also holds for x́t(i) since
ηx́t(i) ≤ 1, which is the only key to obtain (8).

We also note that
K∑
i=1

pt(i)x́
2
t (i) =

K∑
i=1

pt(i)(x̂t(i)− ft)2

=

K∑
i=1

pt(i)x̂
2
t (i)− f2t

≤
K∑
i=1

pt(i)x̂
2
t (i)−

K∑
i=1

p2t (i)x̂
2
t (i)

=

K∑
i=1

pt(i)(1− pt(i))x̂2t (i) (9)

Substituting x́t(i) in equation (8) and combining with (9),
we have

T∑
t=1

(x̂t(j)− ft)−
T∑
t=1

K∑
i=1

pt(i)(x̂t(i)− ft)

=

T∑
t=1

x̂t(j)−
T∑
t=1

K∑
i=1

pt(i)x̂t(i)

≤ γ
T∑
t=1

(
x̂t(j)−

K∑
i=1

pt(i)x̂t(i)

)

+ (e− 2)η

T∑
t=1

K∑
i=1

pt(i)(1− pt(i))x̂2t (i) +
lnK

η
(10)

Observe that x̂t(j) is similarly designed as an unbiased
estimate of xt(j). Then for the expectation with respect to
the sequence of channels attacked by the horizon T , we have
the following relations:

E[x̂t(j)] = xt(j), E

[
K∑
i=1

pt(i)x̂t(i)

]
= E[xt(It)]

and

E

[
K∑
i=1

pt(i)(1− pt(i))x̂2t (i)

]

= E

[
K∑
i=1

pt(i)(K − 1)x2t (i)

]
≤ (K − 1).



We now take the expectation with respect to the sequence of
channels attacked by the horizon T in both sides of the last
inequality of (10). On the left hand side, we have

E

[
T∑
t=1

x̂t(j)

]
− E

[
T∑
t=1

K∑
i=1

pt(i)x̂t(i)

]
= Gmax − E[GA2].

(11)

And for the right hand side we have

E[R.H.S] ≤ γ(Gmax − E[GA2
]) + (e− 2)(K − 1)ηT +

lnK

η

Combining the last two equations we get,

(1− γ)(Gmax − E[GA2]) ≤ (e− 2)(K − 1)ηT +
lnK

η
,

since Gmax can be substituted by T , the above relation gives
us the proof assuming γ ≤ 1/2.

The important observation is that, based on [11] such
an algorithm, Algorithm 2, should give a suboptimal regret
since it can be categorized as a partially observable graph.
However, our analysis gives a tighter bound and shows not
only it is tighter but also it is optimal.

C. Extension to Multiple Channel Observations
We generalize Algorithm 2 to the case of observing multiple

channels. The attacker can observe more than only one channel
in each time slot. The number of channels that can be observed
by the attacker other than the attacked channel depends on the
length of the time slot. At least one channel and at most K−1
channels will be observed by the attacker.

Corollary 3. If the attacker can observe more than one
channel at each time slot, then its regret will be equal to the
following:
Gmax − E [GA2] ≤ 2

√
2 (e− 2)

√
T K−1

m lnK

where m is the number of channels that can be observed
by the attacker. This regret upper-bound shows a faster con-
vergence rate by making more observations as is also shown
in our simulations.

Proof. In order to do the proof, we substitute 1/ (K − 1) by
m/ (K − 1) in Step 4 of Algorithm 2 since in each time slot,
m channels are being chosen uniformally at random. Then the
regret is derived by following the analysis.

V. PERFORMANCE EVALUATION

In this section, we present the simulation results to evaluate
the validity of the proposed attack strategies and the theorems
provided in the previous sections. All the simulations are
conducted in MATLAB and the results achieved are averaged
over 10,000 independent random runs.

We compare the performance of the two proposed learning
algorithms, EXP3-DO and OPT-RO, and show that their
regrets scale as O(T

2
3 ) and O(

√
T ), respectively. We then

examine the impact of different system parameters on its
performance. The parameters include the number of time
slots, total number of channels in the network, number of

possible observations by the attacker in each time slot and
the distribution on the PU activities. Also a secondary user’s
accumulated traffic is evaluated with and without the presence
of a PUE attacker.
K primary users are considered, each acting on one channel.

The primary users’ on-off activity follows a Markovian chain
or i.i.d. distribution in the network. Also the PU activities
on different channels are independent. K idle probabilities
are generated using MATLAB’s rand function, one for each
channel if PUs follow an i.i.d. Bernoulli distributions. If
the channels follow Markovian chain, for each channel we
generate three probabilities, p01, p10, and p1 as the transition
probabilities from state 0 (off) to 1 (on), from 1 to 0, and the
initial idle probability.

Since the goal here is to evaluate the PUE attacker’s per-
formance, for simplicity we consider one SU in the network.
Throughout the simulations, we assume the SU employs an
online learning algorithm called Hedge [14]. The assumption
on the Hedge algorithm is that the secondary user is able
to observe the rewards on all the channels in each time
slot. Hedge provides the minimum regret among all the non-
stochastic optimal learning based algorithms. As a result
the performance of our proposed learning algorithms can be
evaluated in the worst case scenario for the attacker.

The PUE attacker employs either of the proposed attacking
strategies, EXP3-DO or OPT-RO as explained in each section.
Throughout the simulations, we assume the attacker observes
m = 1 channel in each time slot, unless otherwise stated.

A. Comparison of the performance of EXP3-DO and OPT-RO

We compare the performance of each of the two proposed
learning algorithms with the theoretical analysis from section
IV. We consider a network of K = 10 channels. Fig. 3(a)
shows the simulation results. We can observe the following
from the simulations.
• For EXP3-DO, from Corollary (1), for the given system

settings the theoretical upper-bound on the regret is equal
to 4006.3. If we compare it to the actual regret occurred
in the simulations (below 1400), we observe that it is
less than the theoretical upper-bound for any type of PU
activity which complies with our analysis. We also note
that when we derived the theoretical upper-bound we did
not make any assumption on the PU activity. The regret
is only dependent on the K and T .

• The same discussion holds when the PUE attacker em-
ploys the OPT-RO. In this case, the theoretical regret
upper-bound is equal to 1195.4 from Corollary (2).
By comparing it to the actual regret happened in the
simulations (below 400), we observe that it is less that
the theoretical upper-bound regardless of the PU activity
type.

• Both the learning based algorithms, EXP3-DO and OPT-
RO have logarithmic shape; EXP3-DO has a higher slope
which complies with our analysis.

• By comparing the results of the two algorithms, EXP3-
DO has a much higher regret than the OPT-RO as is
expected from the theoretical analysis.



(a) Optimal versus Sub-Optimal learning (b) Number of channels variable for i.i.d. case (c) Number of channels variable for M.C. case

(d) Different number of observations for i.i.d. case (e) Different number of observations for M.C. case (f) Accumulated Traffic of an SU

Figure 3: Simulation results under different PU activity assumptions

Since OPT-RO has a better theoretical regret bound and is also
empirically better than EXP3-RO, in the following evaluations,
we only examine the performance of the OPT-RO.

B. Impact of the number of channels

In this section we examine the impact of the number of
channels in the network on the attacker’s performance. We
consider K variable from 10 to 50. Fig. 3 (b) and (c) show
the attacker’s regret when PUs follow i.i.d. distribution and
Markovian chain respectively. In order to better observe the
results we have plotted the figures for T from 1 to 2000. We
can observe the following from the figures.
• In both figures regardless of the PUs activity type, the oc-

curred regrets are below the regret upper-bound achieved
from the theoretical analysis.

• In both figures, as the number of channels increases
the regret increases as well as is expected based on the
theoretical analysis from Corollary (2).

• As the number of channels increases, the regret does
not increase linearly with it. Instead, the increment in
the regret becomes marginal which complies with the
theoretical analysis. Based on Corollary (2) the regret is
proportional to (

√
K lnK).

C. Impact of the number of observations in each time slot

We consider K = 40 channels in the network. The
number of observing channels, m, varies from 1 to 35.
Fig. 3 (d) and (e) show the performance of the OPT-RO for
m = 1, 3, 8, 18, 35 when the PUs follow i.i.d. distribution and

Markovian chain on the channels, respectively. We can observe
the following from the simulation results.
• As the number of observing channels increases, the at-

tacker achieves a lower regret. This observation complies
with the Corollary (3) provided in Section IV-C.

• In the beginning, even adding a couple of more observing
channels (from m = 1 to m = 3), the regret de-
creases significantly. The decrement in the regret becomes
marginal as the number of observing channels becomes
sufficiently large (e.g., from m = 18 to m = 35).
This observation implies that, in order to achieve a good
attacking performance, the attacker does not need to
observe many channels in each time slot as is the case
with Hedge [14]. In the simulation, when the number
of observing channels (m = 10) is 1

4 of the number of
all channels (K = 40), the regret is approaching to the
optimal.

D. Accumulated Traffic of SU with and without attacker

We set K = 10 and measure the accumulated traffic
achieved by the SU with and without the presence of the
attacker. Fig. 3 (f) shows that the accumulated traffic of the
SU is largely decreased when there is a PUE attacker in the
network for both types of PU activities.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the optimal PUE attacking strate-
gies without any prior knowledge of the primary user activity
characteristics and secondary user channel access policies. We
formulated the PUE attack as a non-stochastic online learning



problem. We identified the uniqueness of PUE attack that
a PUE attacker cannot observe the reward on the attacking
channel, but is able to observe at least one other channel.
We then proposed two online learning algorithms, EXP3-DO
and OPT-RO, to dynamically choose attacking and observing
channels for a PUE attacker in order to minimize its regret.
EXP3-DO is based on the existing theoretical frameworks and
it is suboptimal with regret in the order of O(T

2
3 ). OPT-

RO introduces a new framework and we proved it is optimal
having regret in the order of O(

√
T ). Through theoretical

analysis, we also found that the attacker’s regret is proportional
to
√

1
m and

√
K lnK. That is, the regret decreases when

the attacker can observe more channels in each time slot
and the regret increases when there are more channels in the
network. Furthermore, when the number of observing channels
is small, the regret decreases tremendously if we add a few
more observing channels. However, the decreased regret will
become marginal when more observing channels are added.
This finding implies that an attacker may only need a small
number of observing channels to achieve a good attacking
performance.

The proposed optimal learning algorithm, OPT-RO, also
advances the study of online learning algorithms. It deals with
the situation where a learning agent cannot observe the reward
on the action that is taken but can partially observe the reward
of other actions. Before our work, the regret is proved to
be in the order of O(T

2
3 ). Our algorithm achieves a tighter

regret bound of O(
√
T ) by randomizing the observing actions

(channels) which is also optimal.
As of future work, we believe that our work can serve

as a stepping stone to study many other problems. How to
deal with multiple attackers will be interesting, especially
distribution cases. One other interesting direction is to study
the equilibrium between the PUE attacker(s) and secondary
user(s) when both of them employ learning based algorithms.
Integrating non-perfect spectrum sensing and the ability of
PUE attack detection into our model will also be interesting
especially that the PUE attacker may interfere with the PU
during spectrum sensing period which can make it detectable
by the PU.
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Csaba Szepesvári. Partial monitoring—classification, regret bounds, and
algorithms. Mathematics of Operations Research, 39(4):967–997, 2014.
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